Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 6, 2008 | Submitted
Journal Article Open

Mapping photonic entanglement into and out of a quantum memory

Abstract

Developments in quantum information science rely critically on entanglement—a fundamental aspect of quantum mechanics that causes parts of a composite system to show correlations stronger than can be explained classically. In particular, scalable quantum networks require the capability to create, store and distribute entanglement among distant matter nodes by means of photonic channels. Atomic ensembles can play the role of such nodes. So far, in the photon-counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated through probabilistic protocols. But an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading to intrinsically low count rates for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its storage. After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17%. Together with improvements in single-photon sources, our protocol will allow 'on-demand' entanglement of atomic ensembles, a powerful resource for quantum information science.

Additional Information

© 2008 Nature Publishing Group. Received 16 October 2007; Accepted 3 January 2008. We acknowledge our ongoing collaboration with S. J. van Enk. This research is supported by the Intelligence Advanced Research Projects Activity and by the National Science Foundation. H.D. acknowledges support as Fellow of the Center for the Physics of Information at Caltech. J.L. acknowledges financial support from the European Union (Marie Curie Fellowship). Author Contributions: K.S.C. and H.D. are the principal contributors to the experiment in equal measure.

Attached Files

Submitted - 0712.3571.pdf

Files

0712.3571.pdf
Files (656.2 kB)
Name Size Download all
md5:8467c18559e0850b87df44054841b289
656.2 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023