Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 11, 2012 | Published
Journal Article Open

On the nature of supernovae Ib and Ic

Abstract

Utilizing non-local thermodynamic equilibrium time-dependent radiative-transfer calculations, we investigate the impact of mixing and non-thermal processes associated with radioactive decay on Type IIb/Ib/Ic supernova (SN IIb/Ib/Ic) light curves and spectra. Starting with short-period binary models of ≾5M_⊙ helium-rich stars, originally 18 and 25M_⊙ on the main sequence, we produce 1.2B ejecta which we artificially mix to alter the chemical stratification. While the total ^(56)Ni mass influences the light-curve peak, the spatial distribution of ^(56)Ni, controlled by mixing processes, impacts both the multiband light curves and spectra. With enhanced γ-ray escape. Non-thermal electrons, crucial for the production of He_I lines, deposit a large fraction of their energy as heat, and this fraction approaches 100 per cent under fully ionized conditions. Because energy deposition is generally local well after the light-curve peak, the broad He_I line characteristics of maximum-light SN IIb/Ib spectra require mixing that places ^(56)Ni and helium nuclei to within a γ-ray mean free path. This requirement indicates that SNe IIb and Ib most likely arise from the explosions of stripped-envelope massive stars (main-sequence masses ≾25M_⊙) that have evolved through mass transfer in a binary system, rather than from more massive single Wolf-Rayet stars. In contrast, the lack of He_I lines in SNe Ic may result from a variety of causes: a genuine helium deficiency; strongly asymmetric mixing; weak mixing; or a more massive, perhaps single, progenitor characterized by a larger oxygen-rich core. Helium deficiency is not a prerequisite for SNe Ic. Our models, subject to different mixing magnitudes, can produce a variety of SN types, including IIb, IIc, Ib and Ic. As it is poorly constrained by explosion models, mixing challenges our ability to infer the progenitor and explosion properties of SNe IIb/Ib/Ic.

Additional Information

© 2012 The Authors. Monthly Notices of the Royal Astronomical Society © 2012 RAS. Accepted 2012 May 22; Received 2012 May 22; in original form 2012 March 14. Article first published online: 16 Jul. 2012. LD acknowledges financial support from the European Community through an International Re-integration Grant, under grant number PIRG04-GA-2008-239184, and from 'Agence Nationale de la Recherche' grant ANR-2011-Blanc-SIMI-5-6-007-01. DJH acknowledges support from STScI theory grant HST-AR-11756.01.A and NASA theory grant NNX10AC80G. This research was supported at UCSC by the DOE SciDAC Program under contract DE-FC02-06ER41438, the National Science Foundation (AST 0909129) and the NASA Theory Program (NNX09AK36G). This work was granted access to the HPC resources of CINES under the allocation 2011–c2011046608 made by GENCI (Grand Equipement National de Calcul Intensif).

Attached Files

Published - mnr21374.pdf

Files

mnr21374.pdf
Files (2.6 MB)
Name Size Download all
md5:999af81cc4664d6a1f68160e0f006ee5
2.6 MB Preview Download

Additional details

Created:
September 14, 2023
Modified:
October 23, 2023