Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2012 | public
Book Section - Chapter

Structure Prediction of G Protein-Coupled Receptors and Their Ensemble of Functionally Important Conformations

Abstract

G protein-coupled receptors (GPCRs) are integral membrane proteins whose "pleiotropic" nature enables transmembrane (TM) signal transduction, amplification, and diversification via G protein-coupled and β arrestin-coupled pathways. GPCRs appear to enable this by being structurally flexible and by existing in different conformational states with potentially different signaling and functional consequences. We describe a method for the prediction of the three-dimensional structures of these different conformations of GPCRs starting from their amino acid sequence. It combines a unique protocol of computational methods that first predict the TM regions of these receptors and TM helix shapes based on those regions, which is followed by a locally complete sampling of TM helix packings and their scoring that results in a few (~10–20) lowest energy conformations likely to play a role in binding to different ligands and signaling events. Prediction of the structures for multiple conformations of a GPCR is starting to enable the testing of multiple hypotheses related to GPCR activation and binding to ligands with different signaling profiles.

Additional Information

© 2012 Springer Science+Business Media, LLC.

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024