Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2007 | Submitted
Conference Paper Open

Bayesian Updating and Model Class Selection of Deteriorating Hysteretic Structural Models using Seismic Response Data

Abstract

Identification of structural models from measured earthquake response can play a key role in structural health monitoring, structural control and improving performance-based design. System identification using data from strong seismic shaking is complicated by the nonlinear hysteretic response of structures where the restoring forces depend on the previous time history of the structural response rather than on an instantaneous finite-dimensional state. Furthermore, this inverse problem is ill-conditioned because even if some components in the structure show substantial yielding, others will exhibit nearly elastic response, producing no information about their yielding behavior. Classical least-squares or maximum likelihood estimation will not work with a realistic class of hysteretic models because it will be unidentifiable based on the data. On the other hand, Bayesian updating and model class selection provide a powerful and rigorous approach to tackle this problem when implemented using Markov Chain Monte Carlo simulation methods such as the Metropolis-Hastings, Gibbs Sampler and Hybrid Monte Carlo algorithms. The emergence of these stochastic simulation methods in recent years has led to a renaissance in Bayesian methods across all disciplines in science and engineering because the high-dimensional integrations that are involved can now be readily evaluated. The power of these methods to handle ill-conditioned or unidentifiable system identification problems is demonstrated by using a recently-developed stochastic simulation algorithm, Transitional Markov Chain Monte Carlo, to perform Bayesian updating and model class selection on a class of Masing hysteretic structural models that are relatively simple yet can give realistic responses to seismic loading. Examples will be given using deteriorating hysteretic building models with simulated seismic response data.

Attached Files

Submitted - COMPDYN_Beck_Muto.pdf

Files

COMPDYN_Beck_Muto.pdf
Files (249.1 kB)
Name Size Download all
md5:9363a18ced90a6d38513a8c4a4ea3aca
249.1 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023