Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published August 2012 | Published
Journal Article Open

Evolution in the Volumetric Type Ia Supernova Rate from the Supernova Legacy Survey

Abstract

We present a measurement of the volumetric Type Ia supernova (SN Ia) rate (SNR_Ia) as a function of redshift for the first four years of data from the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). This analysis includes 286 spectroscopically confirmed and more than 400 additional photometrically identified SNe Ia within the redshift range 0.1 ≤ z ≤ 1.1. The volumetric SNR_Ia evolution is consistent with a rise to z ~ 1.0 that follows a power law of the form (1+z)^α, with α = 2.11 ± 0.28. This evolutionary trend in the SNLS rates is slightly shallower than that of the cosmic star formation history (SFH) over the same redshift range. We combine the SNLS rate measurements with those from other surveys that complement the SNLS redshift range, and fit various simple SN Ia delay-time distribution (DTD) models to the combined data. A simple power-law model for the DTD (i.e., ∝ t^(–β)) yields values from β = 0.98 ± 0.05 to β = 1.15 ± 0.08 depending on the parameterization of the cosmic SFH. A two-component model, where SNR_Ia is dependent on stellar mass (M_stellar) and star formation rate (SFR) as SNR_(Ia)(z) = A × M_(stellar)(z) + B × SFR(z), yields the coefficients A = (1.9 ± 0.1) × 10^(–1)4 SNe yr^(–1) M^(–1)_☉ and B = (3.3 ± 0.2) × 10^(–4) SNe yr^(–1) (M_☉ yr^(–1))^(–1). More general two-component models also fit the data well, but single Gaussian or exponential DTDs provide significantly poorer matches. Finally, we split the SNLS sample into two populations by the light-curve width (stretch), and show that the general behavior in the rates of faster-declining SNe Ia (0.8 ≤ s < 1.0) is similar, within our measurement errors, to that of the slower objects (1.0 ≤ s < 1.3) out to z ~ 0.8.

Additional Information

© 2012 American Astronomical Society. Received 2011 September 15; accepted 2012 June 3; published 2012 July 12. We are sincerely grateful to the entire Queued-Service Observations team and staff at CFHT for their patience and assistance throughout the SNLS real-time observing period. We are particularly indebted to Pierre Martin, Jean-Charles Cuillandre, Kanoa Withington, and Herb Woodruff. Canadian collaboration members acknowledge support from NSERC and CIAR; French collaboration members from CNRS/IN2P3, CNRS/INSU, and CEA. M.S. acknowledges support from the Royal Society. This work is based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/ DAPNIA, at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the CFHT Legacy Survey, a collaborative project of NRC and CNRS. This work is based in part on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Gemini program IDs: GS-2003BQ- 8, GN-2003B-Q-9, GS-2004A-Q-11, GN-2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005A-Q-11, GN-2005AQ-11, GS-2005B-Q-6, GN-2005B-Q-7, GN-2006A-Q-7, GN- 2006B-Q-10, and GN-2007A-Q-8. Observations made with ESO Telescopes at the Paranal Observatory under program IDs 171.A-0486 and 176.A-0589. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

Attached Files

Published - Perrett2012p19283Astron_J.pdf

Files

Perrett2012p19283Astron_J.pdf
Files (3.2 MB)
Name Size Download all
md5:49a964c765d812b227da7bdc950dd078
3.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023