Published December 2010 | public
Conference Paper

Proton availability at the air/aerosol/water interface

An error occurred while generating the citation.

Abstract

The acidity of the water surface of aquated aerosols is examd. in expts. in which the uptake of gaseous trimethylamine, TMA, as TMAH+ on the surface of aquated aerosols is monitored via online electrospray mass spectrometry as a function of bulk pH, pHb. TMAH+ signal intensities track pHb along a titrn. curve displaying an equivalence point at pHb = 3.2, instead of the pKa(TMA) = 10.0 value measured on aq. TMA-HCl microdroplets. Inert X+ (X = Li, Na) cations, however, catalyze TMA uptake at pHb 4. The direct kinetic hydrogen isotope effects (1 < TMAH+/TMAD+ < 3.5 on H2O/D2O microdroplets) assocd. with TMA uptake enhancements reveal that they are driven by the competitive protonation (vs. desorption) of interfacial TMA. These outcomes are consistent with thermochem. data on gas-phase clusters showing that TMA can be protonated by the stronger acid H2O only after extensive solvation, but readily so by H3O+ or small (H2O)n.4Li+ clusters at the interface. We infer that protons become available at the aerial interface of neat water about its isoelec. point pIw = 3.2 rather than below pHb 7, and over broader pHb ranges in the presence of other cations.

Additional Information

© 2012 American Chemical Society.

Additional details

Created:
August 19, 2023
Modified:
October 18, 2023