Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 20, 2012 | Published
Journal Article Open

Characterizing Subpopulations within the near-Earth Objects with NEOWISE: Preliminary Results

Abstract

We present the preliminary results of an analysis of the sub-populations within the near-Earth asteroids, including the Atens, Apollos, Amors, and those that are considered potentially hazardous using data from the Wide-field Infrared Survey Explorer (WISE). In order to extrapolate the sample of objects detected by WISE to the greater population, we determined the survey biases for asteroids detected by the project's automated moving object processing system (known as NEOWISE) as a function of diameter, visible albedo, and orbital elements. Using this technique, we are able to place constraints on the number of potentially hazardous asteroids larger than 100 m and find that there are ~4700 ± 1450 such objects. As expected, the Atens, Apollos, and Amors are revealed by WISE to have somewhat different albedo distributions, with the Atens being brighter than the Amors. The cumulative size distributions of the various near-Earth object (NEO) subgroups vary slightly between 100 m and 1 km. A comparison of the observed orbital elements of the various sub-populations of the NEOs with the current best model is shown.

Additional Information

© 2012 The American Astronomical Society. Received 2012 February 17, accepted for publication 2012 April 10. Published 2012 June 4. This publication makes use of data products from the Widefield Infrared Survey Explorer, which is a joint project of the University of California, Los Angeles, and the Jet Propulsion Laboratory/California Institute of Technology, funded by the National Aeronautics and Space Administration. This publication also makes use of data products from NEOWISE, which is a project of the Jet Propulsion Laboratory/California Institute of Technology, funded by the Planetary Science Division of the National Aeronautics and Space Administration. We thank our referee, Dr. Alan Harris of the Space Science Institute, for his helpful comments, which led to a number of new insights, in particular the suggestion to split the Amors by perihelion. We gratefully acknowledge the extraordinary services specific to NEOWISE contributed by the International Astronomical Union's Minor Planet Center, operated by the Harvard-Smithsonian Center for Astrophysics, and the Central Bureau for Astronomical Telegrams, operated by Harvard University. We also thank the worldwide community of dedicated amateur and professional astronomers devoted to minor planet follow-up observations. This research has made use of the NASA/IPAC Infrared Science Archive, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration.

Attached Files

Published - Mainzer2012p18923Astrophys_J.pdf

Files

Mainzer2012p18923Astrophys_J.pdf
Files (1.3 MB)
Name Size Download all
md5:5b39def4b3612bffa247c3c5ab87c201
1.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 18, 2023