Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 15, 2011 | Supplemental Material + Published
Journal Article Open

Reproducible computational biology experiments with SED-ML - The Simulation Experiment Description Markup Language

Abstract

Background: The increasing use of computational simulation experiments to inform modern biological research creates new challenges to annotate, archive, share and reproduce such experiments. The recently published Minimum Information About a Simulation Experiment (MIASE) proposes a minimal set of information that should be provided to allow the reproduction of simulation experiments among users and software tools. Results: In this article, we present the Simulation Experiment Description Markup Language (SED-ML). SED-ML encodes in a computer-readable exchange format the information required by MIASE to enable reproduction of simulation experiments. It has been developed as a community project and it is defined in a detailed technical specification and additionally provides an XML schema. The version of SED-ML described in this publication is Level 1 Version 1. It covers the description of the most frequent type of simulation experiments in the area, namely time course simulations. SED-ML documents specify which models to use in an experiment, modifications to apply on the models before using them, which simulation procedures to run on each model, what analysis results to output, and how the results should be presented. These descriptions are independent of the underlying model implementation. SED-ML is a software-independent format for encoding the description of simulation experiments; it is not specific to particular simulation tools. Here, we demonstrate that with the growing software support for SED-ML we can effectively exchange executable simulation descriptions. Conclusions: With SED-ML, software can exchange simulation experiment descriptions, enabling the validation and reuse of simulation experiments in different tools. Authors of papers reporting simulation experiments can make their simulation protocols available for other scientists to reproduce the results. Because SED-ML is agnostic about exact modeling language(s) used, experiments covering models from different fields of research can be accurately described and combined.

Additional Information

© 2011 Waltemath et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Received: 2 September 2011; Accepted: 15 December 2011; Published: 15 December 2011. The authors thank the whole community of computational systems biology and in particular the members of the network "Computational Modeling in Biology" (COMBINE) for providing requirements and comments. DW received funding for this work from the Marie Curie program and the DFG research training school dIEM oSiRiS (grant 1387/1). AKM was funded partly by the VPH-Share Project and partly by the Maurice Wilkins Centre For Molecular Biodiscovery. RA is grateful for funding by the BBSRC grant BB/D019621/1. IIM was funded by the NIH grants P41-RR013186 and U54-RR022232. MH was funded by the NIH NIGMS grant GM070923. FTB was funded by the NIH/NIGMS grant GM081070. Authors' contributions: DW and NL initiated the project. All authors participated in the discussions leading to the structure of SED-ML. DW, RA, FB and NL developed the first specification of the language. All authors participated to and approved the final manuscript's preparation.

Attached Files

Published - Waltemath2011p17795BMC_Syst_Biol.pdf

Supplemental Material - 1752-0509-5-198-s1.xml

Files

1752-0509-5-198-s1.xml
Files (2.0 MB)
Name Size Download all
md5:83f7ff394fb06f293daf75dd363e56f7
7.9 kB Preview Download
md5:39ec264aad651636341538cc1ad4458c
2.0 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 17, 2023