Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 5, 2012 | public
Journal Article

Implicit signals in small group settings and their impact on the expression of cognitive capacity and associated brain responses

Abstract

Measures of intelligence, when broadcast, serve as salient signals of social status, which may be used to unjustly reinforce low-status stereotypes about out-groups' cultural norms. Herein, we investigate neurobehavioural signals manifest in small (n = 5) groups using functional magnetic resonance imaging and a 'ranked group IQ task' where implicit signals of social status are broadcast and differentiate individuals based on their expression of cognitive capacity. We report an initial overall decrease in the expression of cognitive capacity in the small group setting. However, the environment of the 'ranked group IQ task' eventually stratifies the population into two groups ('high performers', HP and 'low performers', LP) identifiable based on changes in estimated intelligence quotient and brain responses in the amygdala and dorsolateral prefrontal cortex. In addition, we demonstrate signals in the nucleus accumbens consistent with prediction errors in expected changes in status regardless of group membership. Our results suggest that individuals express diminished cognitive capacity in small groups, an effect that is exacerbated by perceived lower status within the group and correlated with specific neurobehavioural responses. The impact these reactions have on intergroup divisions and conflict resolution requires further investigation, but suggests that low-status groups may develop diminished capacity to mitigate conflict using non-violent means.

Additional Information

© 2012 The Royal Society. This work was funded by the Wellcome Trust Principal Research Fellowship (P.R.M.), the Kane Family Foundation (P.R.M.) and the National Institutes of Health (R01-NS045790, P.R.M.), (R01-DA11723, P.R.M.) and (T32-NS43124, K.T.K.). The authors thank the NEMO software development team (N. Apple, M. Ross, J. Shin & J. White) for their help in programming the group task.

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023