Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2, 2012 | public
Journal Article

Conditional modulation of spike-timing-dependent plasticity for olfactory learning

Abstract

Mushroom bodies are a well-known site for associative learning in insects. Yet the precise mechanisms that underlie plasticity there and ensure their specificity remain elusive. In locusts, the synapses between the intrinsic mushroom body neurons and their postsynaptic targets obey a Hebbian spike-timing-dependent plasticity (STDP) rule. Although this property homeostatically regulates the timing of mushroom body output, its potential role in associative learning is unknown. Here we show in vivo that pre–post pairing causing STDP can, when followed by the local delivery of a reinforcement-mediating neuromodulator, specify the synapses that will undergo an associative change. At these synapses, and there only, the change is a transformation of the STDP rule itself. These results illustrate the multiple actions of STDP, including a role in associative learning, despite potential temporal dissociation between the pairings that specify synaptic modification and the delivery of reinforcement-mediating neuromodulator signals.

Additional Information

© 2012 Macmillan Publishers Limited. Received 16 September 2011. Accepted 08 December 2011. Published online 25 January 2012. This work was funded by the Lawrence Hanson Chair at Caltech, the National Institutes on Deafness and other Communication Disorders, Caltech's Broad Fellows Program, the Office of Naval Research (grants N00014-07-1-0741 and N00014-10-1-0735) and the Max Planck Society. We are grateful to L.-P. Mok for help with locust dissections and to E. Schuman, A. Siapas, E. Lubenov, M. Papadopoulou and members of the Laurent lab for comments on the manuscript. Author Contributions: S.C. and G.L. designed the experiments and simulations, discussed the results and wrote the paper. S.C. carried out the experiments and simulations.

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023