Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 1996 | Published
Journal Article Open

Spatial and temporal information processing in the sea urchin embryo: modular and intramodular organization of the CyIIIa gene cis-regulatory system

Abstract

The CyIIIa cytoskeletal actin gene of Strongylocentrotus purpuratus is expressed specifically in the aboral ectoderm. In earlier work we identified a 2.3 kb cis-regulatory region that is necessary and sufficient for correct spatial and temporal expression of a CyIIIa.CAT gene. This region includes about 20 sites of specific protein-DNA interaction, at which at least nine different transcription factors may be bound. All except two of these factors have been cloned. In this work we have analyzed by deletion or mutagenesis each specific interaction. A specific function was identified for every binding site examined. These individual functions include control of amplitude and timing of expression at different phases of embryogenesis, and control of spatial expression. We show that particular negative regulatory interactions are required to repress expression of the CyIIIa.CAT construct in oral ectoderm and in skeletogenic mesenchyme at different stages. In further experiments we determined the overall functional organization of the CyIIIa cis-regulatory system, and we show that this system is modular in its regulatory structure. The 'proximal module' (with respect to the transcription start site) extends upstream for about 800 base pairs, and includes nine target sites serviced by six different transcription factors. Its major role is to establish CyIIIa expression in the aboral ectoderm territory as the blastomere founder cells are specified and the oral-aboral axis is determined, and to activate the CyIIIa gene late in cleavage. The 'middle module,' which lies upstream of the proximal module, acquires major control of CyIIIa function after the blastula stage. It includes six target sites, serviced by four different factors. The middle module is responsible for a sharp increase in expression occurring during gastrulation, mediated by the positively acting factors that bind within it. The middle module also includes sites at which two different negatively acting spatial control factors bind, the functions of which are required for correct spatial expression late in embryogenesis. The 'distal module' contains a number of sites at which a positively acting factor binds, but this module exercises no spatial regulatory function. Interactions within the distal module are required for the normal levels of function of both the proximal and middle modules.

Additional Information

© 1996 The Company of Biologists Limited. Accepted 25 September 1995. The authors wish to thank Dahlia Tamir-Elnekave, María-Rosa Ponce and Michael T. Kim for expert technical assistance. We thank Dr Andy Cameron for valuable discussion, and Dr Ellen Rothenberg for the helpful and critical review of the manuscript. This research was supported by NIH grant (HD-05753).

Attached Files

Published - KIRdev96.pdf

Files

KIRdev96.pdf
Files (1.5 MB)
Name Size Download all
md5:8705dae208b17dc6edaafb0f17830d85
1.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023