Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 2011 | Published
Journal Article Open

Structure of the outer layers of cool standard stars

Abstract

Context. Among late-type red giants, an interesting change occurs in the structure of the outer atmospheric layers as one moves to later spectral types in the Hertzsprung-Russell diagram: a chromosphere is always present, but the coronal emission diminishes and a cool massive wind steps in. Aims. Where most studies have focussed on short-wavelength observations, this article explores the influence of the chromosphere and the wind on long-wavelength photometric measurements. The goal of this study is to assess wether a set of standard near-infrared calibration sources are fiducial calibrators in the far-infrared, beyond 50 μm. Methods. The observational spectral energy distributions were compared with the theoretical model predictions for a sample of nine K- and M-giants. The discrepancies found are explained using basic models for flux emission originating in a chromosphere or an ionised wind. Results. For seven out of nine sample stars, a clear flux excess is detected at (sub)millimetre and/or centimetre wavelengths, while only observational upper limits are obtained for the other two. The precise start of the excess depends upon the star under consideration. For six sources the flux excess starts beyond 210 μm and they can be considered as fiducial calibrators for Herschel/PACS (60–210 μm). Out of this sample, four sources show no flux excess in the Herschel/SPIRE wavelength range (200–670   μm) and are good calibration sources for this instrument as well. The flux at wavelengths shorter than ~1 mm is most likely dominated by an optically thick chromosphere, where an optically thick ionised wind is the main flux contributor at longer wavelengths. Conclusions. Although the optical to mid-infrared spectrum of the studied K- and M-type infrared standard stars is represented well by a radiative equilibrium atmospheric model, a chromosphere and/or ionised stellar wind at higher altitudes dominates the spectrum in the (sub)millimetre and centimetre wavelength ranges. The presence of a flux excess has implications on the role of the stars as fiducial spectrophotometric calibrators in these wavelength ranges.

Additional Information

© 2011 ESO. Received 7 May 2011. Accepted 19 April 2011. Published online 12 September 2011. This work is based on observations collected at the European Southern Observatory, La Silla, Chile within program ESO 71.D-0600 and on observations collected with the IRAM 30 m telescope within project 038_03. We would like to thank R. Zylka and S. Leon for their support for the data reduction. The research at the Caltech Submillimetre Observatory is supported by grant AST-0540882 from the National Science Foundation. S.D. and L.D. acknowledge financial support from the Fund for Scientific Research - Flanders (Belgium). We thank B. Vandenbussche for fruitful discussions.

Attached Files

Published - Dehaes2011p16100Astron_Astrophys.pdf

Files

Dehaes2011p16100Astron_Astrophys.pdf
Files (652.9 kB)
Name Size Download all
md5:b649abb1654a952c44a256701ca8d784
652.9 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023