Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2011 | public
Journal Article

Mantle dynamics of continentwide Cenozoic subsidence and tilting of Australia

Abstract

Australia is distinctive because it experienced first-order, broad-scale vertical motions during the Cenozoic. Here, we use plate-tectonic reconstructions and a model of mantle convection to quantitatively link the large-scale fl ooding history of the continent to mantle convection since 50 Ma. Subduction-driven geodynamic models show that Australia undergoes a 200 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the proto–Tonga-Kermadec subduction systems. However, the model only produces the observed continentwide subsidence, with 300 m of northeast downward tilt since the Eocene, if we assume that Australia has moved northward away from a relatively hot mantle anomaly. The models suggest that Australia's paleoshoreline evolution can only be reproduced if the continent moved northward, away from a large buoyant anomaly. This results in continentwide subsidence of ~200 m. The additional progressive, continentwide tilting down to the northeast can be attributed to the horizontal motion of the continent toward subducted slabs sinking below Melanesia.

Additional Information

© 2011 Geological Society of America. Manuscript received 17 February 2011; revised manuscript received 11 June 2011; manuscript accepted 14 June 2011. We are thankful to Leif Strand from Computational Infrastructure for Geodynamics for his assistance with CitcomS. The Australian Research Council Australian Postgraduate Award administered by the University of Sydney, with additional support from National Science Foundation grant EAR-0810303, fi nancially supported Lydia DiCaprio. This work represents contribution 10022 of the Division of Geological and Planetary Sciences, California Institute of Technology.

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023