Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published January 2011 | Published
Journal Article Open

Bending light to our will

Abstract

This article is based on the Fred Kavli Distinguished Lectureship in Nanoscience presentation given by Harry Atwater (California Institute of Technology) on April 5, 2010 at the Materials Research Society Spring Meeting in San Francisco, CA. The Kavli Foundation supports scientific research, honors scientific achievement, and promotes public understanding of scientists and their work. Its particular focuses are astrophysics, nanoscience, and neuroscience. Solar energy is currently enjoying substantial growth and investment, owing to worldwide sensitivity to energy security and climate change. Solar energy is an inexhaustible resource and is in abundant supply on all continents of the world. The power density of sunlight (~1000 W/m 2 ) and the effi ciency of photovoltaic devices (~10–25%) are high enough so that land use does not limit photovoltaic deployment at the terawatt scale. However solar photovoltaics are currently too expensive to achieve parity with other forms of electricity generation based on fossil fuels. This is largely due to the cost (and for some cases, the abundance) of materials used in photovoltaic modules and systems, and the cost of deploying in current form. This economic and social context has created the present situation where there is widespread interest in photovoltaic technology for power generation, but the cumulative installed world capacity for photovoltaics is <50 GW, and it appears to be very challenging for photovoltaics to play a very substantial role in large-scale (terawatt) electricity generation in the short term.

Additional Information

© 2011 Materials Research Society. Published online by Cambridge University Press: 17 January 2011.

Attached Files

Published - Atwater2011p15471Mrs_Bull.pdf

Files

Atwater2011p15471Mrs_Bull.pdf
Files (693.6 kB)
Name Size Download all
md5:4c1862a5502f01c8e8de479ee6e216c9
693.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023