Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2010 | public
Journal Article

Nano-Electro-Mechanical Switches Derived from Carbon-Based Nanomaterials

Abstract

We provide an overview of our work where carbon-based nanostructures have been applied to two-dimensional (2D) planar and three-dimensional (3D) vertically-oriented nano-electro-mechanical (NEM) switches. In the first configuration, laterally oriented single-walled nanotubes (SWNTs) synthesized using thermal chemical vapor deposition (CVD) were implemented for forming bridge-type 2D NEMS switches, where switching voltages were on the order of a few volts. In the second configuration, vertically oriented carbon nanofibers (CNFs) synthesized using plasma-enhanced (PE) CVD have been explored for their potential application in 3D NEMS. We have performed nanomechanical measurements on such vertically oriented tubes using nanoindentation to determine the mechanical robustness of the CNFs. Electrostatic switching was demonstrated in the CNFs synthesized on refractory metallic nitride substrates, where a nanoprobe was used as the actuating electrode inside a scanning-electron-microscope. The switching voltages were determined to be in the tens of volts range and van der Waals interactions at these length scales appeared significant, suggesting such structures are promising for nonvolatile memory applications. A finite element model was also developed to determine a theoretical pull-in voltage which was compared to experimental results.

Additional Information

© 2011 American Scientific Publishers. Received: 24 April 2010. Accepted: 4 June 2010. We sincerely acknowledge Robert Kowalczyk for his assistance with the PECVD growth chamber and performing chamber upgrades as necessary, in addition to Dr. Choonsup Lee, Dr. Richard L. Baron and Dr. Paul von Allmen for useful discussions. We would also like to thank Shelby Hutchens of the California Institute of Technology (Caltech) and Brian Peters of Agilent Technologies for the images taken in Figures 2(a) and (b). We gratefully acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and was funded through the internal Research and Technology Development (R&TD) program.

Additional details

Created:
August 22, 2023
Modified:
October 24, 2023