Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 2005 | Published
Journal Article Open

Highly optimised global organisation of metabolic networks

Abstract

High-level, mathematically precise descriptions of the global organisation of complex metabolic networks are necessary for understanding the global structure of metabolic networks, the interpretation and integration of large amounts of biologic data (sequences, various -omics) and ultimately for rational design of therapies for disease processes. Metabolic networks are highly organised to execute their function efficiently while tolerating wide variation in their environment. These networks are constrained by physical requirements (e.g. conservation of energy, redox and small moieties) but are also remarkably robust and evolvable. The authors use well-known features of the stoichiometry of bacterial metabolic networks to demonstrate how network architecture facilitates such capabilities, and to develop a minimal abstract metabolism which incorporates the known features of the stoichiometry and respects the constraints on enzymes and reactions. This model shows that the essential functionality and constraints drive the tradeoffs between robustness and fragility, as well as the large-scale structure and organisation of the whole network, particularly high variability. The authors emphasise how domain specific constraints and tradeoffs imposed by the environment are important factors in shaping stoichiometry. Importantly, the consequence of these highly organised tradeoffs and tolerances is an architecture that has a highly structured modularity that is self-dissimilar and scale-rich.

Additional Information

© 2005 IEE. Paper first received 1st July and in revised form 7th October 2005.

Attached Files

Published - TANsb05.pdf

Files

TANsb05.pdf
Files (305.2 kB)
Name Size Download all
md5:f5c34c096d74fb6c61ac2f2c3a9e5c83
305.2 kB Preview Download

Additional details

Created:
August 23, 2023
Modified:
October 24, 2023