Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2006 | public
Journal Article

Bridging the gap between computational and experimental length scales: A review on nanoscale plasticity

Abstract

The results of both experimental studies and molecular dynamics simulations indicate that crystals exhibit strong size effects at the sub-micron scale: smaller is stronger. Until recently, experimental aspects of nano-scale deformation involved the effects of strain gradients, constraints of neighboring layers, grain boundaries, etc., which were key factors in observed size effects. Even without experimental constraints, many computational studies find that yield strength depends on sample size through a power relationship. Both experimental and computational results suggest that a fundamentally different plasticity mechanism might operate at the length scale of material's microstructure. In this work a brief review of some of these works is presented and compared with the results of our gold nanopillar micro-compression experiments, which were found to deform at nearly 50% of theoretical shear strength. To explain the observed size effect, we introduce our phenomenological model of hardening by dislocation starvation.

Additional Information

© 2006 Advanced Study Center Co. Ltd. Received: August 15, 2006.

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023