Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2011 | Published
Journal Article Open

Bridging the gap between low- and high-mass dwarf galaxies

Abstract

While the dark matter content within the most-massive giant and smallest dwarf galaxies has been probed – spanning a range of over one million in mass – an important observational gap remains for galaxies of intermediate mass. This gap covers K-band magnitudes of approximately −16 > MK > −18 mag (for which dwarf galaxies have B−K∼ 2). On the high-mass side of the gap are dwarf elliptical (dE) galaxies that are dominated by stars in their inner regions. While the low-mass side includes dwarf spheroidal (dSph) galaxies that are dark matter dominated and ultracompact dwarf (UCD) objects that are star-dominated. Evolutionary pathways across the gap have been suggested but remain largely untested because the 'gap' galaxies are faint, making dynamical measurements very challenging. With long exposures on the Keck telescope using the Echelle Spectrograph and Imager instrument, we have succeeded in bridging this gap by measuring the dynamical mass for five dwarf galaxies with M_K ∼ −17.5 (M_B ∼ −15.5). With the exception of our brightest dwarf galaxy, they possess relatively flat velocity dispersion profiles of around 20 km s^(−1). By examining their 2D scaling relations and 3D fundamental manifold, we found that the sizes and velocity dispersions of these gap galaxies reveal continuous trends from dE to dSph galaxies. We conclude that low-luminosity dE galaxies are dominated by stars, not by dark matter, within their half light radii. This finding can be understood if internal feedback processes are operating most efficiently in gap galaxies, gravitationally heating the centrally located dark matter to larger radii, whereas external environmental processes, which can strip away stars, have a greater influence on dSph galaxies, resulting in their higher dark matter fractions. UCD objects appear to be more similar to massive compact star clusters than to small galaxies. Our dynamical study of low-mass dE galaxies provides further constraints on the processes that shape some of the smallest and most-numerous galaxies in the Universe.

Additional Information

© 2011 The Authors. Monthly Notices of the Royal Astronomical Society © 2011 RAS. Accepted 2011 January 11. Received 2010 December 12; in original form 2010 July 23. Article first published online: 13 Apr. 2011. We thank J. Janz and T. Lisker for supplying their Virgo cluster dE data in a machine-readable form. We thank E. Tollerud and J. Wolf for useful discussions on galaxy scaling relations. This project made use of the NED and data products from the 2MASS, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration (NASA) and the National Science Foundation. We thank the staff of the W. M. Keck Observatory for their support. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the NASA. We acknowledge financial support from the Access to Major Research Facilities Programme which is a component of the International Science Linkages Programme established under the Australian Government's innovation statement, Backing Australia's Ability.

Attached Files

Published - Forbes2011p14076Mon_Not_R_Astron_Soc.pdf

Files

Forbes2011p14076Mon_Not_R_Astron_Soc.pdf
Files (6.9 MB)
Name Size Download all
md5:8966679bb88c913ffe985c1cc3128683
6.9 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023