Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 1, 2011 | Published
Journal Article Open

PTF 10fqs: A Luminous Red Nova in the Spiral Galaxy Messier 99

Abstract

The Palomar Transient Factory (PTF) is systematically charting the optical transient and variable sky. A primary science driver of PTF is building a complete inventory of transients in the local universe (distance less than 200 Mpc). Here, we report the discovery of PTF 10fqs, a transient in the luminosity "gap" between novae and supernovae. Located on a spiral arm of Messier 99, PTF 10fqs has a peak luminosity of M_r = −12.3, red color (g − r = 1.0), and is slowly evolving (decayed by 1 mag in 68 days). It has a spectrum dominated by intermediate-width Hα (≈930 km s^(−1)) and narrow calcium emission lines. The explosion signature (the light curve and spectra) is overall similar to that of M85 OT2006-1, SN 2008S, and NGC 300 OT. The origin of these events is shrouded in mystery and controversy (and in some cases, in dust). PTF 10fqs shows some evidence of a broad feature (around 8600 Å) that may suggest very large velocities (≈10,000 km s^(−1)) in this explosion. Ongoing surveys can be expected to find a few such events per year. Sensitive spectroscopy, infrared monitoring, and statistics (e.g., disk versus bulge) will eventually make it possible for astronomers to unravel the nature of these mysterious explosions.

Additional Information

© 2011 American Astronomical Society. Received 2010 July 20; accepted 2011 February 4; published 2011 March 14. M.M.K. thanks the Gordon and Betty Moore Foundation for a Hale Fellowship in support of graduate study. The Weizmann Institute PTF participation is supported in part by the Israel Science Foundation via grants to A.G.Y. The Weizmann-Caltech collaborative PTF effort is supported by the US–Israel Binational Science Foundation. A.G.Y. and M.S. are jointly supported by the "making connections" Weizmann–UK program. A.G.Y. further acknowledges support by a Marie Curie IRG fellowship and the Peter and Patricia Gruber Award, as well as funding by the Benoziyo Center for Astrophysics and the Yeda-Sela center at the Weizmann Institute. A.V.F.'s group and KAIT are supported by National Science Foundation (NSF) grant AST-0908886, the Sylvia & Jim Katzman Foundation, the Richard & Rhoda Goldman Fund, Gary and Cynthia Bengier, and the TABASGO Foundation; additional funding was provided by NASA through Spitzer grant 1322321, as well as HST grant AR-11248 from the Space Telescope Science Institute, which is operated by Associated Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. J.S.B. and his group are partially funded by a DOE SciDAC grant. E.O.O. and D.P. are supported by the Einstein fellowship. L.B. is supported by the National Science Foundation under grants PHY 05-51164 and AST 07-07633. We are grateful to the staff of the Gemini Observatory for their promptness and high efficiency in attending to our TOO request. Likewise, we thank the staff of the Very Large Array and the Hobby–Eberly Telescope. We acknowledge the following internet repositories: SEDS (Messier Objects) and GOLDMine (Virgo Cluster), Finally, as always, we are grateful to the librarians who maintain the ADS, the NED, and SIMBAD data systems. The Hobby–Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximillians-Universität München, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors,William P. Hobby and Robert E. Eberly. The Marcario LRS is named for Mike Marcario of High Lonesome Optics, who fabricated several optics for the instrument but died before its completion; it is a joint project of the Hobby–Eberly Telescope partnership and the Instituto de Astronomía de la Universidad Nacional Autónoma de México. GALEX (Galaxy Evolution Explorer) is a NASA Small Explorer, launched in 2003 April. We gratefully acknowledge NASA's support for construction, operation, and science analysis for the GALEX mission, developed in cooperation with the Centre National d'Etudes Spatiales of France and the Korean Ministry of Science and Technology. PAIRITEL is operated by the Smithsonian Astrophysical Observatory (SAO) and was made possible by a grant from the Harvard University Milton Fund, the camera loan from the University of Virginia, and the continued support of the SAO and UC Berkeley. The Expanded Very Large Array is operated by the National Radio Astronomy Observatory, a facility of the NSF operated under cooperative agreement by Associated Universities, Inc.

Attached Files

Published - Kasliwal2011p13405Astrophys_J.pdf

Files

Kasliwal2011p13405Astrophys_J.pdf
Files (1.3 MB)
Name Size Download all
md5:506818178a5e8031cede199798cd5d8f
1.3 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 23, 2023