Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2010 | Published
Book Section - Chapter Open

Effects of bulk and grain boundary recombination on the efficiency of columnar-grained crystalline silicon film solar cells

Abstract

Columnar-grained polycrystalline silicon films deposited at low temperatures are promising materials for use in thin-film photovoltaics. We study the effects of recombination at grain boundaries, bulk intragranular recombination, grain size, and doping in such structures with two-dimensional device physics simulations, explicitly modeling the full statistics and electrostatics of traps at the grain boundary. We characterize the transition from grain-boundary-limited to bulk-lifetime-limited performance as a function of intergranular defect density and find that higher bulk lifetimes amplify grain boundary recombination effects in the intermediate regime of this transition. However, longer bulk lifetimes ultimately yield higher efficiencies. Additionally, heavier base doping is found to make performance less sensitive to grain boundary defect density.

Additional Information

© 2010 IEEE. Issue Date: 20-25 June 2010. Date of Current Version: 01 November 2010. The authors wish to thank Daniel B. Turner-Evans for useful discussions. This work is supported by BP Solar.

Attached Files

Published - Deceglie2010p13419Pvsc_2008_33Rd_Ieee_Photovoltaic_Specialists_Conference_Vols_1-4.pdf

Files

Deceglie2010p13419Pvsc_2008_33Rd_Ieee_Photovoltaic_Specialists_Conference_Vols_1-4.pdf

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024