Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 1, 2011 | Published
Journal Article Open

Kepler's First Rocky Planet: Kepler-10b

Abstract

NASA's Kepler Mission uses transit photometry to determine the frequency of Earth-size planets in or near the habitable zone of Sun-like stars. The mission reached a milestone toward meeting that goal: the discovery of its first rocky planet, Kepler-10b. Two distinct sets of transit events were detected: (1) a 152 ± 4 ppm dimming lasting 1.811 ± 0.024 hr with ephemeris T [BJD] = 2454964.57375^(+0.00060)_(–0.00082) + N * 0.837495^(+0.000004)_(–0.000005) days and (2) a 376 ± 9 ppm dimming lasting 6.86 ± 0.07 hr with ephemeris T [BJD] = 2454971.6761^(+0.0020)_(–0.0023) + N * 45.29485^(+0.00065) _(–0.00076) days. Statistical tests on the photometric and pixel flux time series established the viability of the planet candidates triggering ground-based follow-up observations. Forty precision Doppler measurements were used to confirm that the short-period transit event is due to a planetary companion. The parent star is bright enough for asteroseismic analysis. Photometry was collected at 1 minute cadence for >4 months from which we detected 19 distinct pulsation frequencies. Modeling the frequencies resulted in precise knowledge of the fundamental stellar properties. Kepler-10 is a relatively old (11.9 ± 4.5 Gyr) but otherwise Sun-like main-sequence star with T_(eff) = 5627 ± 44 K, M_⋆ = 0.895 ± 0.060 M_⊙ , and R_⋆ = 1.056 ± 0.021 R_⊙. Physical models simultaneously fit to the transit light curves and the precision Doppler measurements yielded tight constraints on the properties of Kepler-10b that speak to its rocky composition: M_P = 4.56^9+1.17)_(–1.29) M_⊕, R_P = 1.416^(+0.033)_(–0.036) R_⊕, and ρ_P = 8.8^(+2.1)_(–2.9) g cm^(–3). Kepler-10b is the smallest transiting exoplanet discovered to date.

Additional Information

© 2011 American Astronomical Society. Received 2010 November 10; accepted 2010 November 25; published 2011 February 7. Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology. The authors thank Carly Chubak for computing the barycentric radial velocity of Kepler-10. J.C.D. acknowledges support from The National Center for Atmospheric Research which is sponsored by the National Science Foundation. Funding for this Discovery mission is provided by NASA's Science Mission Directorate.

Attached Files

Published - Batalha2011p13016Astrophys_J.pdf

Files

Batalha2011p13016Astrophys_J.pdf
Files (4.2 MB)
Name Size Download all
md5:fa2ac7b38bc543a8050b6c48911a1ecd
4.2 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 23, 2023