Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2005 | Submitted
Book Section - Chapter Open

DNA hybridization catalysts and catalyst circuits

Abstract

Practically all of life's molecular processes, from chemical synthesis to replication, involve enzymes that carry out their functions through the catalysis of metastable fuels into waste products. Catalytic control of reaction rates will prove to be as useful and ubiquitous in DNA nanotechnology as it is in biology. Here we present experimental results on the control of the decay rates of a metastable DNA "fuel". We show that the fuel complex can be induced to decay with a rate about 1600 times faster than it would decay spontaneously. The original DNA hybridization catalyst [15] achieved a maximal speed-up of roughly 30. The fuel complex discussed here can therefore serve as the basic ingredient for an improved DNA hybridization catalyst. As an example application for DNA hybridization catalysts, we propose a method for implementing arbitrary digital logic circuits.

Additional Information

© 2005 Springer-Verlag Berlin Heidelberg. Thanks to Ben Rahn, Jeremy Leibs, Joseph Schaeffer, Jongmin Kim, Dave Zhang, and especially Paul Rothemund for stimulating discussion and help preparing figures and simulations. GS was supported by the Swiss National Science Foundation, EW was supported by NSF CAREER Grant No. 0093486, NSF ITR Grant No. 0113443, and GenTel.

Attached Files

Submitted - catalysts_DNA10_preprint.pdf

Files

catalysts_DNA10_preprint.pdf
Files (342.4 kB)
Name Size Download all
md5:bdd06cd642ffee385743263bf041e5ae
342.4 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 13, 2024