Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2010 | Published
Journal Article Open

The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints

Abstract

Aims. We present photometric properties and distance measurements of 252 high redshift Type Ia supernovae (0.15 < z < 1.1) discovered during the first three years of the Supernova Legacy Survey (SNLS). These events were detected and their multi-colour light curves measured using the MegaPrime/MegaCam instrument at the Canada-France-Hawaii Telescope (CFHT), by repeatedly imaging four one-square degree fields in four bands. Follow-up spectroscopy was performed at the VLT, Gemini and Keck telescopes to confirm the nature of the supernovae and to measure their redshifts. Methods. Systematic uncertainties arising from light curve modeling are studied, making use of two techniques to derive the peak magnitude, shape and colour of the supernovae, and taking advantage of a precise calibration of the SNLS fields. Results. A flat ΛCDM cosmological fit to 231 SNLS high redshift type Ia supernovae alone gives Ω_M = 0.211 ± 0.034(stat) ± 0.069(sys). The dominant systematic uncertainty comes from uncertainties in the photometric calibration. Systematic uncertainties from light curve fitters come next with a total contribution of ± 0.026 on Ω_M. No clear evidence is found for a possible evolution of the slope (β) of the colour-luminosity relation with redshift.

Additional Information

© 2010 ESO. Received 19 March 2010, Accepted 24 June 2010, Published online 10 November 2010. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France- Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. Based on observations obtained at the European Southern Observatory using the Very Large Telescope on the Cerro Paranal (ESO Large Programme 171.A-0486 & 176.A-0589). Based on observations (programs GS-2003B-Q-8, GN-2003B-Q-9, GS-2004A-Q-11, GN-2004A-Q-19, GS-2004B-Q-31, GN-2004B-Q-16, GS-2005A-Q-11, GN-2005A-Q-11, GS-2005B-Q-6, GN-2005B-Q-7, GN-2006A-Q-7, GN-2006B-Q-10) obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil) and CONICET (Argentina). Based on observations obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. Mark Sullivan acknowledges support from the Royal Society. Table 9 is available in electronic form at http://aanda.org and at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A7. Tables 10 and 11 are only available in electronic form at the CDS. We thank the anonymous referee for helping clarify and improve some sections this paper. We gratefully acknowledge the assistance of the CFHT Queued Service Observing Team.We heavily relied on the dedication of the CFHT staff and particularly J.-C. Cuillandre for continuous improvement of the instrument performance. The real-time pipelines for supernovae detection ran on computers integrated in the CFHT computing system, and were very efficiently installed, maintained and monitored by K. Withington (CFHT). We also heavily relied on the real-time Elixir pipeline which is operated and monitored by J.-C. Cuillandre, E. Magnier and K. Withington. The French collaboration members carry out the data reductions using the CCIN2P3. Canadian collaboration members acknowledge support from NSERC and CIAR; French collaboration members from CNRS/IN2P3, CNRS/INSU, PNC and CEA. This work was supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the US Department of Energy. The France- Berkeley Fund provided additional collaboration support. CENTRA members were supported by Fundação para a Ciência e Tecnologia (FCT), Portugal under POCTI/FNU/43423. S. Fabbro and C. Gonçalves acknowledge support from FCT under grants No. SFRH/BPD/14682/2003 and SFRH/BPD/11641/2002 respectively.

Attached Files

Published - Guy2010p12369Astron_Astrophys.pdf

Files

Guy2010p12369Astron_Astrophys.pdf
Files (1.5 MB)
Name Size Download all
md5:4a9b074daa7fe47b8636f51f735af38c
1.5 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 21, 2023