Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2010 | Published
Journal Article Open

Mechanisms of Jet Formation on the Giant Planets

Abstract

The giant planet atmospheres exhibit alternating prograde (eastward) and retrograde (westward) jets of different speeds and widths, with an equatorial jet that is prograde on Jupiter and Saturn and retrograde on Uranus and Neptune. The jets are variously thought to be driven by differential radiative heating of the upper atmosphere or by intrinsic heat fluxes emanating from the deep interior. However, existing models cannot account for the different flow configurations on the giant planets in an energetically consistent manner. Here a three-dimensional general circulation model is used to show that the different flow configurations can be reproduced by mechanisms universal across the giant planets if differences in their radiative heating and intrinsic heat fluxes are taken into account. Whether the equatorial jet is prograde or retrograde depends on whether the deep intrinsic heat fluxes are strong enough that convection penetrates into the upper troposphere and generates strong equatorial Rossby waves there. Prograde equatorial jets result if convective Rossby wave generation is strong and low-latitude angular momentum flux divergence owing to baroclinic eddies generated off the equator is sufficiently weak (Jupiter and Saturn). Retrograde equatorial jets result if either convective Rossby wave generation is weak or absent (Uranus) or low-latitude angular momentum flux divergence owing to baroclinic eddies is sufficiently strong (Neptune). The different speeds and widths of the off-equatorial jets depend, among other factors, on the differential radiative heating of the atmosphere and the altitude of the jets, which are vertically sheared. The simulations have closed energy and angular momentum balances that are consistent with observations of the giant planets. They exhibit temperature structures closely resembling those observed and make predictions about as yet unobserved aspects of flow and temperature structures.

Additional Information

© 2010 American Meteorological Society. Manuscript received 4 March 2010, in final form 4 June 2010. This work was supported by a David and Lucile Packard Fellowship and by the NASA Outer Planets Research Program (Grant NNX10AQ05G). The GCM is based on the Flexible Modeling System of the Geophysical Fluid Dynamics Laboratory; the simulations were performed on Caltech's Division of Geological and Planetary Sciences Dell cluster. We thank Andy Ingersoll and Yohai Kaspi for helpful discussions and comments on drafts of this paper.

Attached Files

Published - Liu2010p12226J_Atmos_Sci.pdf

Files

Liu2010p12226J_Atmos_Sci.pdf
Files (3.2 MB)
Name Size Download all
md5:357f378aa69cbd4e6c6e33b96712cf9b
3.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 21, 2023