Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1988 | public
Journal Article

Structure and behavior of diffusion flames in a pressure gradient

Abstract

The structure of a diffusion flame embedded in a flow field parallel to the flame is studied under conditions where this external flow imposes an adverse pressure gradient. It is convenient to think of the physical problem as a flame lying along the flow direction of a divergent channel. The mathematical problem is reduced to a set of ordinary differential equations by (i) employing the Howarth transformation to eliminate the variable density and (ii) introducing a similarity solution somewhat in the manner of the Falkner-Skan treatment of boundary layer flows. Because the low-density gas near the flame responds more readily to the pressure gradient than does the higher density gas, a reverse flow develops in the low density region which severely affects both the structure of the flame and the fuel consumption rate. For a flame with unit stoichiometry, the reverse flow eventually leads to extinction of the flame by separating the two shear layers that bound the fuel and oxidizer streams. For stoichiometry corresponding to methane-air, the flame situates itself near the oxidizer side of the reverse flow and has no tendency toward extinguishment.

Additional Information

© 1988 Combustion Institute; Published by Elsevier Inc. Twenty-First Symposium (International on Combustion). Available online 14 July 2007. The authors are grateful for several illuminating discussions with Professor T. Kubota. This work was supported in part by AFOSR grant AFOSR-84-0286 under Dr. Julian M. Tishkoff, Directorate of Aerospace Sciences. The second author has also been supported by a Charles Lee Powell fellowship.

Additional details

Created:
August 19, 2023
Modified:
October 20, 2023