Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 8, 2010 | Published
Book Section - Chapter Open

Mid-Infrared Spectral Diagnostics of Luminous Infrared Galaxies

Abstract

We present a statistical analysis of 248 luminous infrared galaxies (LIRGs) which comprise the Great Observatories All-sky LIRG Survey (GOALS) observed with the Infrared Spectrograph (IRS) on-board Spitzer in the rest-frame wavelength range between 5 and 38 µm. The GOALS sample enables a direct measurement of the relative contributions of star-formation and active galactic nuclei (AGN) to the total infrared (IR) emission from a large, statistically complete sample of LIRGs in the local Universe.Several diagnostics effective at isolating the AGN contribution to the Mid-infrared (MIR) emission using [NeV], [OIV] and [NeII] gas emission lines, the 6.2 µm PAH equivalent width (EQW) and the shape of the MIR continuum are compared. The [NeV] line which indicates the presence of an AGN is detected in 22% of all LIRGs. The 6.2 µm PAH EQW, [NeV]/L_(IR), [NeV]/[NeII] and [OIV]/[NeII] ratios, and the ratios of 6.2 µm PAH flux to the integrated continuum flux between 5.3 and 5.8 µm suggest values of around 10% for the fractional AGN contribution to the total IR luminosity of LIRGs. The median of these estimates suggests that for local LIRGs the fractional AGN contribution to the total IR luminosity is ~12%. AGN dominated LIRGs have higher global and nuclear IR luminosities, warmer MIR colors and are interacting more than starburst (SB) dominated LIRGs. However there are no obvious linear correlations between these properties, suggesting that none of these properties alone can determine the activity and evolution of an individual LIRG. A study of the IRAC colors of LIRGs confirms that methods of finding AGN on the basis of their MIR colors are effective at choosing AGN but 50% to 40% of AGN dominated LIRGs are not selected as such with these methods.

Additional Information

© 2010 American Institute of Physics. Issue Date: 8 June 2010.

Attached Files

Published - Petric2010p11967Aip_Conf_Proc.pdf

Files

Petric2010p11967Aip_Conf_Proc.pdf
Files (284.8 kB)
Name Size Download all
md5:31cbfc41e746a7997a76d1996fe75e6e
284.8 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
January 13, 2024