Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 2009 | Published
Journal Article Open

Rapid mapping of chromosomal breakpoints: from blood to BAC in 20 days

Abstract

Structural chromosome aberrations and associated segmental or chromosomal aneusomies are major causes of reproductive failure in humans. Despite the fact that carriers of reciprocal balanced translocation often have no other clinical symptoms or disease, impaired chromosome homologue pairing in meiosis and karyokinesis errors lead to over-representation of translocations carriers in the infertile population and in recurrent pregnancy loss patients. At present, clinicians have no means to select healthy germ cells or balanced zygotes in vivo, but in vitro fertilization (IVF) followed by preimplantation genetic diagnosis (PGD) offers translocation carriers a chance to select balanced or normal embryos for transfer. Although a combination of telomeric and centromeric probes can differentiate embryos that are unbalanced from normal or unbalanced ones, a seemingly random position of breakpoints in these IVF-patients poses a serious obstacle to differentiating between normal and balanced embryos, which for most translocation couples, is desirable. Using a carrier with reciprocal translocation t(4;13) as an example, we describe our state-of-the-art approach to the preparation of patient-specific DNA probes that span or 'extent' the breakpoints. With the techniques and resources described here, most breakpoints can be accurately mapped in a matter of days using carrier lymphocytes, and a few extra days are allowed for PGD-probe optimization. The optimized probes will then be suitable for interphase cell analysis, a prerequisite for PGD since blastomeres are biopsied from normally growing day 3 – embryos regardless of their position in the mitotic cell cycle. Furthermore, routine application of these rapid methods should make PGD even more affordable for translocation carriers enrolled in IVF programs.

Additional Information

© 2009 Polish Histochemical et Cytochemical Society. Submitted: 21 September, 2008. Accepted after reviews: 2 January, 2009. Parts of this work have been presented at the 13th Congress of the International Federation of Societies for Histochemistry and Cytochemistry (ICHC2008), Medical University of Gdansk, Poland, August 27-30, 2008. This work was supported in parts by NIH grants CA80792, CA88258, CA123370, and HD44313, and a grant from the Director, Office of Energy Research, Office of Health and Environmental Research, U.S. Department of Energy, under contract DE-AC02-05CH11231. JFW was supported in part by NIH grant HD45736 and a grant from the UC Discovery Program, which also supported AB. Ideograms were kindly provided by D. Adler, Ph.D., Dept. of Pathology, Univ. Washington. We acknowledge the support from staff at Reprogenetics providing metaphase spreads and mapping data. We like to express our thanks to the scientists at the Human Genome Center, California Institute of Technology, Pasadena, whose generosity made these studies possible. Disclaimer: This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or The Regents of the University of California.

Attached Files

Published - Lu2009p11510Folia_Histochem_Cyto.pdf

Files

Lu2009p11510Folia_Histochem_Cyto.pdf
Files (2.2 MB)
Name Size Download all
md5:ce217e176ca4ccd30fa476df8cb927ca
2.2 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 20, 2023