Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 15, 2010 | Published
Journal Article Open

Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO

Abstract

Organic aerosol (OA) represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB) influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF) analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA), low-volatility OOA (LV-OOA), and biomass burning OA (BBOA). A reduced "hydrocarbon-like OA" (HOA) component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1) and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (>90%) anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C_2H_4O_2^+ (m/z 60, a marker for levoglucosan and other primary BB species). WRF-FLEXPART calculated fire impact factors (FIF) show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field due to model transport errors. This component is small or absent when forest fires are suppressed by precipitation. Since PMF factors represent organic species grouped by chemical similarity, additional postprocessing is needed to more directly apportion OA amounts to sources, which is done here based on correlations to different tracers. The postprocessed AMS results are similar to those from an independent source apportionment based on multiple linear regression with gas-phase tracers. During a flight with very high forest fire intensity near the basin OA arising from open BB represents ~66% of the OA mass in the basin and contributes similarly to OA mass in the outflow. Aging and SOA formation of BB emissions is estimated to add OA mass equivalent to about ~32–42% of the primary BBOA over several hours to a day.

Additional Information

© Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Received: 14 January 2010 – Published in Atmos. Chem. Phys. Discuss.: 2 February 2010. Revised: 20 May 2010 – Accepted: 8 June 2010 – Published: 15 June 2010. This study was supported by NSF (ATM- 0449815, ATM-0513116, ATM-0810950), NSF/UCAR S05-39607, NOAA (NA08OAR4310565), and EPA STAR (RD-83216101-0 and R833747). PFD is grateful for an EPA STAR graduate fellowship (FP-91650801) and an NSF International Postdoctoral Fellowship (0701013). IMU and ACA thank NASA for graduate fellowships (NNG05GQ50H and NNG04GR06H). Edited by: L. Molina.

Attached Files

Published - DeCarlo2010p10555Atmos_Chem_Phys.pdf

Files

DeCarlo2010p10555Atmos_Chem_Phys.pdf
Files (2.2 MB)
Name Size Download all
md5:277938940f593c3dffc801cb0d819694
2.2 MB Preview Download

Additional details

Created:
August 23, 2023
Modified:
October 20, 2023