Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published 1954 | Published
Book Section - Chapter Open

Fundamental approach to laminar flame propagation

Abstract

The complete system of equations for a theory of laminar flame equations is presented, taking into account both heat conduction and diffusion, for the case of an arbitrary number of simultaneous reactions. The eigenvalue problem determining the flame velocity is formulated. Two examples are given in order to show that explicit analytical expressions for the flame velocity can be obtained, which are in good agreement with the results obtained by numerical integration of the equations. In the first example (hydrazine decomposition) one reaction is considered as global, i.e., rate-controlling, reaction. In the second example (ozone decomposition) a hypothesis is introduced for the concentration of the free radical O, which corresponds to the steady-state approximation generally used in classical chemical kinetics. In both cases approximate explicit formulae are obtained for the flame velocity using legitimate approximation methods, without making drastic assumptions. The steady-state assumption used for the ozone flame has a bearing on a better understanding of the mechanism of chain reactions in general. The method indicated in the paper gives hope that the more complicated chain reactions, such as the combustion of hydrocarbons, will also be made accessible to theoretical computation.

Additional Information

Copyright 1954 Butterworths Scientific.

Attached Files

Published - 47_von_Karman_T_1953.pdf

Files

47_von_Karman_T_1953.pdf
Files (1.6 MB)
Name Size Download all
md5:7f0ccfdd9e8cf118729fda5fb1a9dd9c
1.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023