Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 9, 2009 | Published
Journal Article Open

Electroactive micro and nanowells for optofluidic storage

Abstract

This paper reports an optofluidic architecture which enables reversible trapping, detection and long term storage of spectrally multiplexed semiconductor quantum dot cocktails in electrokinetically active wells ranging in size from 200nm to 5μm. Here we describe the microfluidic delivery of these cocktails, fabrication method and principal of operation for the wells, and characterize the readout capabilities, storage and erasure speeds, internal spatial signal uniformity and potential storage density of the devices. We report storage and erase speeds of less than 153ms and 30ms respectively and the ability to provide 6-bit storage in a single 200nm well through spectral and intensity multiplexing. Furthermore, we present a novel method for enabling passive long term storage of the quantum dots in the wells by transporting them through an agarose gel matrix. We envision that this technique could find eventual application in fluidic memory or display devices.

Additional Information

© 2009 Optical Society of America. Received 7 Jul 2009; revised 28 Oct 2009; accepted 28 Oct 2009; published 5 Nov 2009. This work is supported by National Science Foundation through the Sensors and Sensor Networks program under Grant No. NSF/CTS 0529045 and by the Defense Advanced Research Projects Agency through the Center for Optofluidic Integration funded under the University Photonics Research program.

Attached Files

Published - Cordovez2009p6444Opt_Express.pdf

Files

Cordovez2009p6444Opt_Express.pdf
Files (1.6 MB)
Name Size Download all
md5:41c05a5887851c7ea590fe544c8ffb91
1.6 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023