Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published October 2009 | Published
Journal Article Open

Dynamic rupture modeling on unstructured meshes using a discontinuous Galerkin method

Abstract

We introduce the application of an arbitrary high-order derivative (ADER) discontinuous Galerkin (DG) method to simulate earthquake rupture dynamics. The ADER-DG method uses triangles as computational cells which simplifies the process of discretization of very complex surfaces and volumes by using external automated tools. Discontinuous Galerkin methods are well suited for solving dynamic rupture problems in the velocity-stress formulation as the variables are naturally discontinuous at the interface between two elements. Therefore, the fault has to be honored by the computational mesh. The so-called Riemann problem can be solved to obtain well defined values of the variables at the discontinuity itself. Fault geometries of high complexity can be modeled thanks to the flexibility of unstructured meshes, which solves a major bottleneck of other high-order numerical methods. Additionally, element refinement and coarsening are easily controlled in the meshing process to better resolve the near-fault area of the model. The fundamental properties of the method are shown, as well as a series of validating exercises with reference solutions and a comparison with the well-established finite difference, boundary integral, and spectral element methods, in order to test the accuracy of our formulation. An example of dynamic rupture on a nonplanar fault based upon the Landers 1992 earthquake fault system is presented to illustrate the main potentials of the new method.

Additional Information

©2009 American Geophysical Union. Received 23 December 2008; accepted 6 July 2009; published 1 October 2009. The authors thank the Deutsche Forschungsgemeinschaft (DFG), as the work was supported through the Emmy Noether-program (KA 2281/2-1). We thank Gilbert Brietzke for providing us with the FD and SBIE solutions shown for the 2-D analog of the SCEC test case in section 6 and Cristóbal Castro for some fruitful discussions on the treatment of nonlinear Riemann problems. Steve M. Day and Peter Moczo are also acknowledged for their useful reviews which have helped to clarify and improve the original manuscript.

Attached Files

Published - delaPuente2009p6103J_Geophys_Res-Sol_Ea.pdf

Files

delaPuente2009p6103J_Geophys_Res-Sol_Ea.pdf
Files (1.7 MB)
Name Size Download all
md5:85c5ea5fe871db9165963a3ea81cf9f8
1.7 MB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 19, 2023