Published January 20, 1997 | Published
Technical Report Open

Numerical Studies of the Gauss Lattice Problem

Keller, H. B.
An error occurred while generating the citation.

Abstract

The difference between the number of lattice points N(R) that lie in x^2 + y^2 ≤ R^2 and the area of that circle, d(R) = N(R) - πR^2, can be bounded by |d(R)| ≤ KR^θ. Gauss showed that this holds for θ = 1, but the least value for which it holds is an open problem in number theory. We have sought numerical evidence by tabulating N(R) up to R ≈ 55,000. From the convex hull bounding log |d(R)| versus log R we obtain the bound θ ≤ 0.575, which is significantly better than the best analytical result θ ≤ 0.6301 ... due to Huxley. The behavior of d(R) is of interest to those studying quantum chaos.

Additional Information

[I} P.M. BIeher, Z.M. Cheng, F.J. Dyson and J.L. Lebowitz. Distribution of the error term for the number of lattice points inside a shifted circle. Comm.in Math. Phys., 154:433-469, 1993. [2] J. Cizek and G. del Re. C.A. Coulson and the surface energy of metals: The distribution of eigenvalues as a difficult problem in number theory. Int. J. of Quantum Chem., 31:287-293, 1987. [3] C.A. Coulson. Bull. Inst. Math. Appl., 9:2, 1973. [4] W. Fraser and C.'C. Gotlieb. A calculation of the number of lattice points in the circle and sphere. Mathematics of Computation, 16:282-290, 1962. [5J C.F. Gauss. Werke, volume 2. [6] G.G. Hall. C.A. Coulson and the surface-energy of metals: A further comment. Int. 1. Quant., 34:301-304, 1988. [7] G.H. Hardy. On Dirichlet's divisor problem. Proc. London Math. Soc., Ser. 2, 15:1-25, 1915. [8] D.A. Hejhal. The Selberg trace formula and the Riemann zeta function. Duke Math. J., 43:441-482, 1976. [9] M.N. Huxley. Exponential sums and lattice points II. Proc. London Math. Soc., 66(2):279-301, 1993. [10] H. Iwaniec and C.J. Mozzochi. On the divisor and circle problems. J. Number Theory, 29:60-93, 1988. [11] L.-K. Hua. The lattice-points in a circle. Quart. J. Math., Oxford Ser., 13:18-29, 1942. [12] H.B. Keller and J.R. Swenson. Experiments on the lattice problem of Gauss. Mathematics of Computation, 17(83):223-230, 1963. [13] G. Kolesnik. On the order of ((1/2 + it) and o(r). Pacific J. of Math., 98:107-122, 1982. [14] J.E. Littlewood and A. Walfisz. Proc. of the Royal Soc., A106:478-487, 1929. [15] H.L. Mitchell III. Numerical experiments on the number of lattice points in the circle. Tech. Rep. No. 17, Appl. Math. and Stat. Labs., Stanford University, 1963. [16] Nieland. Math. Ann., 98:717-736,1928. [17] W. Sierpinski. Prace matematyczno-jizyczne, volume 17, 1906. [18] J.M. Titchmarsh. Proc. London Math. Soc. (2), 38:96-115, 1935. [19] W.-L. Yin. The lattice points in a circle. Scientia Sinica, 11(1):10-15, 1962.

Attached Files

Published - CRPC-97-1.pdf

Files

CRPC-97-1.pdf
Files (586.6 kB)
Name Size Download all
md5:3918b8139f80337b58466e476976e360
586.6 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
January 29, 2025