Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 2009 | Published
Journal Article Open

A spatially resolved study of photoelectric heating and [C II] cooling in the LMC

Abstract

Context. Photoelectric heating is a dominant heating mechanism for many phases of the interstellar medium. We study this mechanism throughout the Large Magellanic Cloud (LMC). Aims. We aim to quantify the importance of the [C II] cooling line and the photoelectric heating process of various environments in the LMC and to investigate which parameters control the extent of photoelectric heating. Methods. We use the BICE [C II] map and the Spitzer/SAGE infrared maps. We examine the spatial variations in the efficiency of photoelectric heating: photoelectric heating rate over power absorbed by grains, i.e. the observed [C II] line strength over the integrated infrared emission. We correlate the photoelectric heating efficiency and the emission from various dust constituents and study the variations as a function of H emission, dust temperatures, and the total infrared luminosity. The observed variations are interpreted in a theoretical framework. From this we estimate radiation field, gas temperature, and electron density. Results. We find systematic variations in photoelectric efficiency. The highest efficiencies are found in the diffuse medium, while the lowest coincide with bright star-forming regions (~1.4 times lower). The [C II] line emission constitutes 1.32% of the far infrared luminosity across the whole of the LMC. We find correlations between the [C II] emission and ratios of the mid infrared and far infrared bands, which comprise various dust constituents. The correlations are interpreted in light of the spatial variations of the dust abundance and by the local environmental conditions that affect the dust emission properties. As a function of the total infrared surface brightness, S_(TIR), the [C II] surface brightness can be described as: S_([C II]) = 1.25 S^(0.69)_(TIR)[10^(-3) erg s^(-1) cm^(-2) sr^(-1)], for S_(TIR) ≳ 3.2 x 10^(-4) erg s^(-1) cm^(-2) sr^(-1). We provide a simple model of the photoelectric efficiency as a function of the total infrared luminosity. We find a power-law relation between radiation field and electron density, consistent with other studies. The [C II] emission is well-correlated with the 8 µm emission, suggesting that the polycyclic aromatic hydrocarbons play a dominant role in the photoelectric heating process.

Additional Information

© ESO 2009. Received 16 September 2008. Accepted 25 November 2008. We would like to thank F. Boulanger, L. Verstraete and A. Jones for their helpful conversations. Meixner, Vijh, Sewilo and Leitherer have been funded by the NASA/Spitzer grant 1275598, and NASA NAG-12595.

Attached Files

Published - Rubin2009p32710.10510004-6361200810968.pdf

Files

Rubin2009p32710.10510004-6361200810968.pdf
Files (7.8 MB)
Name Size Download all
md5:a74b2afbae7bb155a95cc108f1421ce5
7.8 MB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 19, 2023