Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 1, 2007 | public
Report Open

Buffer Coding for Asymmetric Multi-Level Memory

Abstract

Certain storage media such as flash memories use write-asymmetric, multi-level storage elements. In such media, data is stored in a multi-level memory cell the contents of which can only be increased, or reset. The reset operation is expensive and should be delayed as much as possible. Mathematically, we consider the problem of writing a binary sequence into write-asymmetric q-ary cells, while recording the last r bits written. We want to maximize t, the number of possible writes, before a reset is needed. We introduce the term Buffer Code, to describe the solution to this problem. A buffer code is a code that remembers the r most recent values of a variable. We present the construction of a single-cell (n = 1) buffer code that can store a binary (l = 2) variable with t = [q/2^(r - 1)] + r - 2 and a universal upper bound to the number of rewrites that a single-cell buffer code can have: ..... We also show a binary buffer code with arbitrary n, q, r, namely, the code uses n q-ary cells to remember the r most recent values of one binary variable. The code can rewrite the variable times, which is asymptotically optimal in q and n. . We then extend the code construction for the case r = 2, and obtain a code that can rewrite the variable t = (q - 1)(n - 2) + 1 times. When q = 2, the code is strictly optimal.

Additional Information

This work was supported in part by the Lee Center for Advanced Networking at the California Institute of Technology. Also available from http://www.paradise.caltech.edu/papers/etr083.pdf

Files

etr083.pdf
Files (153.3 kB)
Name Size Download all
md5:2199d2b022f3a798086afe3f7349c6ce
153.3 kB Preview Download

Additional details

Created:
August 19, 2023
Modified:
October 24, 2023