CaltechTHESIS
  A Caltech Library Service

The interaction of breaking solitary waves with an armored bed

Citation

Petroff, Catherine M. (1993) The interaction of breaking solitary waves with an armored bed. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/65xx-xn79. https://resolver.caltech.edu/CaltechETD:etd-07182007-103459

Abstract

This study investigates the interaction of breaking waves with a bed of loose angular material with a median grain size of 4.8 mm. It is motivated by the engineering problem of determining rock sizes for revetments used as protection for structures in the coastal zone and by the need for an understanding of the mechanics of material movement under waves. Both the effect of the bed on the velocities and accelerations in breaking and non-breaking waves, and the effect of breaking waves on the movement of bed material is measured.

Velocities in breaking waves are measured at elevations approaching the bottom boundary, both for the case of a level bed of graded angular material and for a flat plate at the same location. By changing the water depth and the initial conditions of the incident wave, the relative size of the rock with respect to the breaking wave height is varied. Material movement resulting from the wave passage is measured and compared to the breaking wave height and to the turbulent shear determined near the bed. Using velocity and acceleration records near the rock bed together with observations of rock motion, the mechanics of material movement under waves are investigated.

The roughness elements in the bed are found to have a large effect on both the mean and fluctuating velocities in the wave near the bottom. Evidence is shown of the existence of an inner layer where individual pieces of bed material influence the flow over the bed. A method for determining the maximum mean shear under a single wave is presented. Mean vertical velocities are measured to be not negligible near the bed and are shown to produce convective accelerations of the same order as the accelerations due to turbulent fluctuations.

The movement of bed material is compared with the calculated shear on the bed and with local velocities and accelerations measured very close to the individual rocks. The mean size of the material moved in the bed is found to vary with the amount of shear on the bed. When adjusted for the mean size of the moved material, the calculated shears correspond well with the criterion for critical shear from the Shields curve used in steady flow. From the observed movement of particles during the passage of a wave and the measured velocities and accelerations in the wave, inertial forces are found to contribute to particle movement, especially in the regions before and after wave crest passage.

Item Type:Thesis (Dissertation (Ph.D.))
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Civil Engineering
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Raichlen, Fredric
Thesis Committee:
  • Raichlen, Fredric (chair)
  • List, John A.
  • Brooks, Norman H.
  • Vanoni, Vito A.
Defense Date:26 February 1993
Record Number:CaltechETD:etd-07182007-103459
Persistent URL:https://resolver.caltech.edu/CaltechETD:etd-07182007-103459
DOI:10.7907/65xx-xn79
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:2926
Collection:CaltechTHESIS
Deposited By: Imported from ETD-db
Deposited On:02 Aug 2007
Last Modified:16 Apr 2021 22:21

Thesis Files

[img]
Preview
PDF (Petroff_cm_1993.pdf) - Final Version
See Usage Policy.

18MB

Repository Staff Only: item control page