CaltechTHESIS
  A Caltech Library Service

Non-Equilibrium Dynamics: Diffusion in Small Numbers and Ribosomal Self-Assembly

Citation

Seitaridou, Effrosyni (2008) Non-Equilibrium Dynamics: Diffusion in Small Numbers and Ribosomal Self-Assembly. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/X12R-DA46. https://resolver.caltech.edu/CaltechETD:etd-05142008-113003

Abstract

Biological systems are encountered in states that are far from equilibrium. A change in the cell's condition triggers the flow of energy and matter that causes the cell's transition from that non-equilibrium state to a different state. Our interest is on non-equilibrium systems and the way these relate to the cell's "small numbers" limit as well as to the mechanisms of self-assembly.

Cells contain proteins and nucleotides in numbers smaller than Avogadro's. In addition, advances in single-molecule experiments, which are, by definition, a case of the "small numbers" problem, have emphasized the importance of fluctuations. Does the result we get from a single-molecule measurement agree with what we would get from a bulk measurement? Is it a fluctuation from the mean? It is, thus, of biological interest to see the behavior of non-equilibrium systems at the "small numbers" limit where fluctuations become important. Using microfluidics, we concentrate on the diffusion of a small number of submicron particles in a system that is away from equilibrium. Therefore, we study the "small numbers" limit of Fick's Law, with special reference to the fluctuations that attend diffusive dynamics in order to experimentally test the theoretical predictions obtained via the use of E. T. Jaynes' "principle of maximum caliber."

The process of macromolecular self-assembly is also highly dynamical. The system's components come together, defeating in this way entropic effects, to form the system. In the case of the ribosome, whose importance lies in its ability to synthesize proteins, understanding the mechanism of the highly dimensional process of self-assembly becomes relevant when designing, for example, new antibiotics. The second part of this thesis concentrates on the RNA-protein interactions which, in the case of the ribosome, determine the mechanism of self-assembly. With the use of microfluidic technology and a fluorescence assay we determine the thermodynamics and kinetics of RNA folding and RNA-protein binding for a fragment of the bacterial 30S ribosomal subunit, paving the way for the study of the complete assembly of the 30S subunit.

Item Type:Thesis (Dissertation (Ph.D.))
Subject Keywords:diffusion; dog-flea; ribosome; S15; self-assembly; small numbers; three-way junction
Degree Grantor:California Institute of Technology
Division:Engineering and Applied Science
Major Option:Applied Physics
Thesis Availability:Public (worldwide access)
Research Advisor(s):
  • Phillips, Robert B.
Thesis Committee:
  • Phillips, Robert B. (chair)
  • Rees, Douglas C.
  • Bockrath, Marc William
  • Fraser, Scott E.
Defense Date:8 May 2008
Record Number:CaltechETD:etd-05142008-113003
Persistent URL:https://resolver.caltech.edu/CaltechETD:etd-05142008-113003
DOI:10.7907/X12R-DA46
ORCID:
AuthorORCID
Seitaridou, Effrosyni0000-0002-1668-6786
Default Usage Policy:No commercial reproduction, distribution, display or performance rights in this work are provided.
ID Code:1806
Collection:CaltechTHESIS
Deposited By: Imported from ETD-db
Deposited On:22 May 2008
Last Modified:08 Nov 2023 00:41

Thesis Files

[img]
Preview
PDF (Seitaridou_thesis.pdf) - Final Version
See Usage Policy.

56MB

Repository Staff Only: item control page