Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 7, 2007 | Published
Journal Article Open

Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: An ab initio study of time-resolved photoelectron spectra

Abstract

The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface.

Additional Information

©2007 American Institute of Physics. (Received 11 September 2006; accepted 14 December 2006; published online 2 February 2007) This work has been supported by the National Science Foundation (U.S.) and by a Grant-in-Aid for Basic Science and the 21st Century COE Program for Frontier in Fundamental Chemistry from the Ministry of Education, Culture, Sports, Science, and Technology of Japan. M.T.N.V. thanks JSPS for a Postdoctoral Fellowship.

Attached Files

Published - VARjcp07.pdf

Files

VARjcp07.pdf
Files (287.7 kB)
Name Size Download all
md5:9458a1ff1000ce3ee8a77ac7bddaa1f5
287.7 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023