Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published February 21, 2005 | public
Journal Article Open

Large electrostrictive strain at gigahertz frequencies in a polymer nanoactuator: Computational device design

Abstract

Using molecular dynamics with a first-principles-based force field (denoted MSXX), we show that large electrostrictive strains (similar to 5%) at extremely high frequencies (over similar to 10^(9) Hz) can be achieved in a poly(vinylidene-fluoride) nanoactuator if the packing density of the polymer chains is chosen appropriately. We control the packing density by assembling the polymer chains on a silicon < 111 > surface with one-half coverage. Under these conditions, the equilibrium, zero electric field conformation of the polymer contains a combination of gauche and trans bonds. This structure can be transformed to an all-T conformation by applying an external electric field. Such molecular transformation is accompanied by a large deformation in the direction of the polymer chains. The device shows typical electrostrictive behavior with strain proportional to the square of the polarization.

Additional Information

© 2005 American Institute of Physics. Received 16 September 2004; accepted 7 December 2004; published online 15 February 2005. This work was supported by DARPA, program manager: Carey Schwartz.

Files

STRAapl05.pdf
Files (150.0 kB)
Name Size Download all
md5:da875ebd003c62cf8f051f7751fe2f9b
150.0 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023