Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 1, 1982 | public
Journal Article Open

A transposable element that splits the promoter region inactivates a Drosophila cuticle protein gene

Abstract

Two mutations that affect larval cuticle protein gene expression in the 2/3 variant Drosophila melanogaster strain were investigated. We demonstrate that this strain synthesizes an electrophoretic variant, fast 2 (CPf2), of wild-type cuticle protein 2 (CP2). It also lacks detectable amounts of cuticle protein 3 (CP3). The other major cuticle proteins are still present. Protein and DNA sequence analyses indicate that point mutations cause two amino acid substitutions that change the electrophoretic mobility of CPf2 relative to that of CP2. The mutation abolishing the expression of CP3 was found to be a 7.3-kilobase DNA insertion located within the T-A-T-A box region of this gene, at -31 base pairs from the mRNA start site. This DNA insertion, called H.M.S. Beagle, belongs to a conserved family of repeated DNA elements that have characteristics similar to those of previously characterized Drosophila transposable elements. H.M.S. Beagle elements are repeated approximately 50 times in the haploid genome and exhibit restriction fragment-length polymorphisms around points of insertion between Canton S, Oregon R, and 2/3 Drosophila strains. Sequence analysis indicates that H.M.S. Beagle contains 266-base-pair direct repeats at its termini and is flanked by a duplication of 4 base pairs of target DNA sequence, T-A-T-A, in the CP3 gene insertion. Thus, insertion of a transposable element into the putative promoter region of the CP3 gene is evidently responsible for inactivating CP3 gene expression.

Additional Information

© 1982 by the National Academy of Sciences. Contributed by Norman Davidson, September 7, 1982. We thank Drs. N. Davis Hershey, Sara Tobin, Edward Berger, and Leroy Hood, and Mark Garginkel for various contributions. This research was supported by grants from the National Institutes of Health. We wish to note that the first analyses of the genome blots and clone maps showing a major DNA change that was quite possibly an insertion in the gene III region were made by D.K. in Berkeley. Further genomic DNA blot experiments demonstrating an insert were carried out essentially concurrently by both groups. 2/3 λ clones were isolated and sequences were determined in Pasadena.

Files

SNYpnas82.pdf
Files (1.4 MB)
Name Size Download all
md5:aae29ecfc60a81ae56f6dcd7b5611c10
1.4 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023