Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published June 2005 | Published
Book Section - Chapter Open

Towards reducing the gap between PMEPR of multicarrier and single carrier signals

Abstract

It has recently been shown that by altering the sign of each subcarrier in a multicarrier system significant reduction in the peak to mean envelope power (PMEPR) can be obtained. In fact, the PMEPR can even be made a constant independent of the number of subcarriers n. However, finding the best sign requires a search over 2^n possible signs which is computationally prohibitive. In this paper, we first propose a greedy algorithm to choose the signs based on p-norm minimization and we prove that it can achieve a PMEPR of order log n. We further decrease the PMEPR by enlarging the search space considered by the greedy algorithm. By ignoring peaks with probability less than l0^-3, simulation results show that the PMEPR of a multicarrier system with 128 subcarriers each one modulated by 64QAM constellations is reduced to 3.4. This implies that at the cost of one bit of information per subcarrier (i.e., not sending information over the sign of each subcarrier) and modest computational complexity in the transmitter, the PMEPR can be reduced from 12.5 to 3.4 which is within 1.6 dB of the PMEPR of a single carrier system with 64QAM modulation.

Additional Information

© 2005 IEEE. Reprinted with Permission. Publication Date: 5-8 June 2005. Posted online: 2005-09-12. This work was supported in part by the National Science Foundation under grant no. CCR-0133818, by the Office of Naval Research under grant no. N00014-02-1-0578, and by Caltech's Lee Center for Advanced Networking.

Attached Files

Published - SHAspawc05.pdf

Files

SHAspawc05.pdf
Files (841.2 kB)
Name Size Download all
md5:6d9257a58b786ecde16a30e4f9f0dc36
841.2 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
March 5, 2024