Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 1993 | Published
Journal Article Open

Ion velocity distributions in helicon wave plasmas: Magnetic field and pressure effects

Abstract

Consideration of ion transport in high density, low pressure plasma systems is important for meeting process requirements in the manufacturing of ultra-large-scale integrated circuits. The ion energy and angular distributions at the boundary between the plasma and the wafer, the sheath, influence etching selectivity, linewidth control, plasma-induced damage, and microscopic etching uniformity. These distributions, in turn, are easily altered by changing the magnetic field profile and/or the neutral gas pressure. Using Doppler-shifted laser-induced fluorescence, metastable ion velocity distribution functions in helicon-wave-excited Ar plasmas are measured. Two magnetic field configurations are examined. For a magnetic "mirror," where the field exhibits a maximum and a saddle point in the source, the plasma is observed to be asymmetric and nonuniform: this leads to broadened velocity distributions and significant ion drift from one region of the plasma to another. As the pressure is increased in the mirror field configuration, the transverse ion "temperature" exhibits a maximum as a function of pressure and, when etching is ion-flux limited, either decreasing or increasing the pressure should result in improved linewidth control. The plasma is more symmetric when the magnetic field is reversed in the source and again downstream. With this double cusp configuration, the transverse ion temperature decreases monotonically with pressure, and improved linewidth control in the ion-flux limit would be obtained by operating at higher pressure.

Additional Information

© 1993 American Vacuum Society. (Received 3 June 1993; accepted 25 September 1993)

Attached Files

Published - NAKjvstb93.pdf

Files

NAKjvstb93.pdf
Files (1.6 MB)
Name Size Download all
md5:9bbac1fdc9e9636ac6fd2058ef47be75
1.6 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023