Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 2008 | Published
Journal Article Open

Warm-started wavefront reconstruction for adaptive optics

Abstract

Future extreme adaptive optics (ExAO) systems have been suggested with up to 10^5 sensors and actuators. We analyze the computational speed of iterative reconstruction algorithms for such large systems. We compare a total of 15 different scalable methods, including multigrid, preconditioned conjugate-gradient, and several new variants of these. Simulations on a 128×128 square sensor/actuator geometry using Taylor frozen-flow dynamics are carried out using both open-loop and closed-loop measurements, and algorithms are compared on a basis of the mean squared error and floating-point multiplications required. We also investigate the use of warm starting, where the most recent estimate is used to initialize the iterative scheme. In open-loop estimation or pseudo-open-loop control, warm starting provides a significant computational speedup; almost every algorithm tested converges in one iteration. In a standard closed-loop implementation, using a single iteration per time step, most algorithms give the minimum error even in cold start, and every algorithm gives the minimum error if warm started. The best algorithm is therefore the one with the smallest computational cost per iteration, not necessarily the one with the best quasi-static performance.

Additional Information

© 2008 Optical Society of America. Received November 15, 2007; revised March 10, 2008; accepted March 10, 2008; posted March 13, 2008 (Doc. ID 89709); published April 24, 2008.

Attached Files

Published - LESjosaa08.pdf

Files

LESjosaa08.pdf
Files (277.0 kB)
Name Size Download all
md5:d2f8a14bd323159bcc8abb084b9934e5
277.0 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023