Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 2001 | public
Journal Article Open

Overproduction of PDR3 Suppresses Mitochondrial Import Defects Associated with a TOM70 Null Mutation by Increasing the Expression of TOM72 in Saccharomyces cerevisiae

Abstract

Most mitochondrial proteins are synthesized with cleavable amino-terminal targeting signals that interact with the mitochondrial import machinery to facilitate their import from the cytosol. We previously reported that the presequence of the F1-ATPase beta subunit precursor (pre-F1beta ) acts as an intramolecular chaperone that maintains the precursor in an import-competent conformation prior to import (P. Hajek, J. Y. Koh, L. Jones, and D. M. Bedwell, Mol. Cell. Biol. 17:7169-7177, 1997). We also found that a mutant form of pre-F1beta with a minimal targeting signal (Delta 1,2 pre-F1beta) is inefficiently imported into mitochondria because it rapidly folds into an import-incompetent conformation. We have now analyzed the consequences of reducing the pre-F1beta targeting signal to a minimal unit in more detail. We found that Delta 1,2 pre-F1beta is more dependent upon the Tom70p receptor for import than WT pre-F1beta is, resulting in a growth defect on a nonfermentable carbon source at 15°C. Experiments using an in vitro mitochondrial protein import system suggest that Tom70p functions to maintain a precursor containing the Delta 1,2 pre-F1beta import signal in an import-competent conformation. We also identified PDR3, a transcriptional regulator of the pleiotropic drug resistance network, as a multicopy suppressor of the mitochondrial import defects associated with Delta 1,2 pre-F1beta in a tom70Delta strain. The overproduction of PDR3 mediated this effect by increasing the import of Delta 1,2 pre-F1beta into mitochondria. This increased the mitochondrial ATP synthase activity to the extent that growth of the mutant strain was restored under the selective conditions. Analysis of the transcription patterns of components of the mitochondrial outer membrane import machinery demonstrated that PDR3 overproduction increased the expression of TOM72, a little studied TOM70 homologue. These results suggest that Tom72p possesses overlapping functions with Tom70p and that the pleiotropic drug resistance network plays a previously unappreciated role in mitochondrial biogenesis.

Additional Information

© 2001, American Society for Microbiology. Received 28 February 2001/Returned for modification 11 April 2001/Accepted 21 August 2001 This work was supported by grants from the American Heart Association and the National Institutes of Health. We thank Vytas Bankaitis, Scott Moye-Rowley, Trevor Lithgow, Wylie Nichols, and Mike Douglas for their generous gifts of plasmids and strains.

Files

KOHmcb01.pdf
Files (277.1 kB)
Name Size Download all
md5:d5bcd55c47627bb482d95293170a3a66
277.1 kB Preview Download

Additional details

Created:
August 21, 2023
Modified:
October 16, 2023