Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published April 22, 2005 | Published
Journal Article Open

First-principles study of the switching mechanism of [2]catenane molecular electronic devices

Abstract

We present a first-principles study of the coherent charge transport properties of bistable [2]catenane molecular monolayers sandwiched between Au(111) electrodes. We find that conduction channels around the Fermi level are dominated by the two highest occupied molecular orbital levels from tetrathiafulvalene (TTF) and dioxynaphthalene (DNP) and the two lowest unoccupied molecular orbital levels from tetracationic cyclophane (CBPQT(4+)), and the OFF to ON switching results from the energetic shifts of these orbitals as CBPQT(4+) moves from TTF to DNP. We show that the superposition principle can be adopted for predicting the function of the composite device.

Additional Information

© 2005 The American Physical Society. Received 30 June 2004; published 21 April 2005. We thank Fraser Stoddart, James Heath, Yi Luo, Hsian-Rong Tseng, Amar Flood, and Wei-Qiao Deng for helpful discussions. This work was supported by NSF-NIRT and MARCO-FENA. The facilities of the MSC were supported by ONR-DURIP, ARO-DURIP, NSF-MRI, and the Beckman Institute. Y.-H. Kim also acknowledges the support from IPAM at UCLA.

Attached Files

Published - KIMprl05.pdf

Files

KIMprl05.pdf
Files (227.1 kB)
Name Size Download all
md5:65379ba880bc1ea13bef99f998843d9a
227.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023