Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published December 15, 1990 | public
Journal Article Open

Numerical modeling of the filament-assisted diamond growth environment

Abstract

A numerical model of the filament-assisted diamond growth environment has been developed and used to calculate temperature, velocity, and species concentration profiles, accounting both for transport and detailed chemical kinetics. The computed hydrocarbon concentrations agree well with previously measured values, when allowance is made for 3D effects not included in our model. Upper-bound, diffusion-limited film growth rates for various assumed growth species have been computed, and it has been found no hydrocarbon species other than CH3, C2H2, or CH4 can account for measured diamond growth rates. The effect of thermal diffusion on H-atom profiles has been examined, and found to be only 10%. Although the environment is far from thermodynamic equilibrium, several reactions are close to partial equilibrium throughout the region from the filament to the substrate. It is also shown that homogeneous H-atom recombination is too slow to explain the experimentally observed decrease in the concentration of H with increasing initial methane concentration.

Additional Information

Copyright © 1990 American Institute of Physics. (Received 8 May 1990; accepted 27 August 1990) This work is supported in part by the Office of Naval Research, Contract No. N00014-90-J-1386.

Files

GOOjap90.pdf
Files (966.1 kB)
Name Size Download all
md5:8038ef1edc59e8fb43037b418bf0b320
966.1 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023