Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published March 1, 2005 | public
Journal Article Open

Nonphotolithographic nanoscale memory density prospects

Abstract

Technologies are now emerging to construct molecular-scale electronic wires and switches using bottom-up self-assembly. This opens the possibility of constructing nanoscale circuits and memories where active devices are just a few nanometers square and wire pitches may be on the order of ten nanometers. The features can be defined at this scale without using photolithography. The available assembly techniques have relatively high defect rates compared to conventional lithographic integrated circuits and can only produce very regular structures. Nonetheless, with proper memory organization, it is reasonable to expect these technologies to provide memory densities in excess of 10/sup 11/ b/cm/sup 2/ with modest active power requirements under 0.6 W/Tb/s for random read operations.

Additional Information

"©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE." Manuscript received December 1, 2003; revised June 28, 2004. This work was supported by the Defense Advanced Research Projects Agency Moletronics Program under Grant ONR N00014-01-0651, Grant MDA972-01-03-0005, and Grant ONR N00014-01-0659. Architecture work at this early stage is only feasible and meaningful in close cooperation with scientists working on device properties and fabrication. Special thanks to J. Heath, C. Lieber, S. Williams, and D. Stewart for their support in this work. The authors are also grateful to M. Ziegler and J. Ellenbogen for drawing attention to some of the parasitic coupling effects in the diode memory banks. The anonymous reviewers made good observations and suggestions that helped make this a more complete and accessible paper.

Files

DEHieeetn05a.pdf
Files (1.5 MB)
Name Size Download all
md5:9649c8cef0dd19fee7402772c0090aab
1.5 MB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 13, 2023