On the Acoustical Dynamics of Bubble Clouds
- Creators
- d'Agostino, L.
- Brennen, C. E.
- Other:
- Hoyt, J. W.
Abstract
Recently, Morch [1,2,3,4] Chahine [5,6] and others have focused attention on the dynamics of a cloud or cluster of cavitating bubbles and have expanded on the work of van Wijngaarden [7,8] and others. Unfortunately, there appear to be a number of inconsistencies in this recent work which will require further study before a coherent body of knowledge on the dynamics of clouds of bubbles is established. For example, Morch and his co-workers [1,2,3] have visualized the collapse of a cloud of cavitating bubbles as involving the inward propagation of a shock wave; it is assumed that the bubbles collapse virtually completely when they encounter the shock. This implies the virtual absense of non-condensable gas in the bubbles and the predominance of vapor. Yet in these circumstances the mixture in the the cloud will not have any real sonic speed. As implied by a negative L.H.S. of equation (9), the fluid motion equations for the mixture would be elliptic not hyperbolic and hence shock wave solutions are inappropriate.
Attached Files
Published - DAG058.pdf
Files
Name | Size | Download all |
---|---|---|
md5:0c2349a5966e1226b8a971498d1d0f49
|
415.4 kB | Preview Download |
Additional details
- Eprint ID
- 206
- Resolver ID
- CaltechAUTHORS:DAGasmecmff83
- Created
-
2004-12-10Created from EPrint's datestamp field
- Updated
-
2019-10-02Created from EPrint's last_modified field
- Series Name
- Fluids Engineering Division
- Series Volume or Issue Number
- 2