Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published May 15, 2004 | Published
Journal Article Open

Graviton mass from close white dwarf binaries detectable with LISA

Abstract

The arrival times of gravitational waves and optical light from orbiting binaries provide a mechanism to understand the propagation speed of gravity when compared to that of light or electromagnetic radiation. This is achieved with a measurement of any offset between the optically derived orbital phase and that derived from gravitational wave data, at a specified location of one binary component with respect to the other. Using a sample of close white dwarf binaries (CWDBs) detectable with the Laser Interferometer Space Antenna and optical light curve data related to binary eclipses from meter-class telescopes for the same sample, we determine the accuracy to which orbital phase differences can be extracted. We consider an application of these measurements involving a variation of the speed of gravity, when compared to the speed of light, due to a massive graviton. For a subsample of ∼400 CWDBs with high signal-to-noise ratio gravitational wave and optical data with magnitudes brighter than 25, the combined upper limit on the graviton mass is at the level of ∼6×10^-24 eV. This limit is two orders of magnitude better than the present limit derived by Yukawa-correction arguments related to the Newtonian potential and applied to the Solar System.

Additional Information

© 2004 The American Physical Society. Received 2 November 2003; published 7 May 2004. We thank Alison Farmer for information related to the binary sample and Daniel Holz for pointing out previous work on this subject. This work was supported in part by DOE Grant DE-FG03-92-ER40701 and the Sherman Fairchild foundation (AC) and by NASA Grant NAG5-10707 and the Japan Society for the Promotion of Science (NS).

Attached Files

Published - COOprd04c.pdf

Files

COOprd04c.pdf
Files (402.7 kB)
Name Size Download all
md5:5228e1e9b01841c915e37672f8e26206
402.7 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023