Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published November 15, 2004 | public
Journal Article Open

Excision boundary conditions for black-hole initial data

Abstract

We define and extensively test a set of boundary conditions that can be applied at black-hole excision surfaces when the Hamiltonian and momentum constraints of general relativity are solved within the conformal thin-sandwich formalism. These boundary conditions have been designed to result in black holes that are in quasiequilibrium and are completely general in the sense that they can be applied with any conformal three-geometry and slicing condition. Furthermore, we show that they retain precisely the freedom to specify an arbitrary spin on each black hole. Interestingly, we have been unable to find a boundary condition on the lapse that can be derived from a quasiequilibrium condition. Rather, we find evidence that the lapse boundary condition is part of the initial temporal gauge choice. To test these boundary conditions, we have extensively explored the case of a single black hole and the case of a binary system of equal-mass black holes, including the computation of quasicircular orbits and the determination of the innermost stable circular orbit. Our tests show that the boundary conditions work well.

Additional Information

©2004 The American Physical Society (Received 23 July 2004; published 12 November 2004) The authors are grateful to J. Isenberg, L. Lindblom, V. Moncrief, N. O`Murchadha, M. Scheel, M. Shibata, and S. Teukolsky for illuminating discussions. The authors are grateful to K. Thorne and L. Lindblom for their hospitality during the Caltech Visitors Program in the Numerical Simulation of Gravitational Wave Sources in the spring of 2003, during which part of this work was performed. This work was supported in part by NSF Grant No. PHY-0140100 to Wake Forest University, No. PHY-9900672 to Cornell University, and No. PHY-0244906 and No. PHY-0099568 to the California Institute of Technology. Computations were performed on the Wake Forest University DEAC Cluster.

Files

COOprd04.pdf
Files (529.0 kB)
Name Size Download all
md5:10cb6c752c5f1076c8b939b70449ab6b
529.0 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 13, 2023