Welcome to the new version of CaltechAUTHORS. Login is currently restricted to library staff. If you notice any issues, please email coda@library.caltech.edu
Published September 15, 2006 | public
Journal Article Open

Circular orbits and spin in black-hole initial data

Abstract

The construction of initial data for black-hole binaries usually involves the choice of free parameters that define the spins of the black holes and essentially the eccentricity of the orbit. Such parameters must be chosen carefully to yield initial data with the desired physical properties. In this paper, we examine these choices in detail for the quasiequilibrium method coupled to apparent-horizon/quasiequilibrium boundary conditions. First, we compare two independent criteria for choosing the orbital frequency, the "Komar-mass condition" and the "effective-potential method," and find excellent agreement. Second, we implement quasilocal measures of the spin of the individual holes, calibrate these with corotating binaries, and revisit the construction of nonspinning black-hole binaries. Higher-order effects, beyond those considered in earlier work, turn out to be important. Without those, supposedly nonspinning black holes have appreciable quasilocal spin; furthermore, the Komar-mass condition and effective-potential method agree only when these higher-order effects are taken into account. We compute a new sequence of quasicircular orbits for nonspinning black-hole binaries, and determine the innermost stable circular orbit of this sequence.

Additional Information

©2006 The American Physical Society (Received 9 May 2006; published 11 September 2006) We would like to thank Bernard Whiting and Clifford Will for useful discussions. This work was supported in part by NSF Grant No. PHY-0244906 to the California Institute of Technology. Computations were performed on the Wake Forest University DEAC Cluster.

Files

CAUprd06.pdf
Files (898.7 kB)
Name Size Download all
md5:1d04cd8e0ebd55dbd58a38b8391c0dce
898.7 kB Preview Download

Additional details

Created:
August 22, 2023
Modified:
October 16, 2023